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ABSTRACT: Image deblurring (ID) is an ill-posed problem typically addressed by using
regularization, or prior knowledge, on the unknown image (and also on the blur operator, in the
blind case). ID is often formulated as an optimization problem, where the objective function includes
a data term encouraging the estimated image (and blur, in blind ID) to explain well the observed
data (typically, the squared norm of a residual) plus a regularizer that penalizes solutions deemed
undesirable. In this paper, we propose new criteria for adjusting the regularization parameter and/or
the number of iterations of ID algorithms.
A method for blind image deblurring is presented. The method only makes weak assumptions about
the blurring filter and is able to undo a wide variety of blurring degradations. To overcome the ill-
posedness of the blind image deblurring problem, the method includes a learning technique which
initially focuses on the main edges of the image and gradually takes details into account. A new image
prior, which includes a new edge detector, is used. The method is able to handle unconstrained blurs,
but also allows the use of constraints or of prior information on the blurring filter, as well as the use
of filters defined in a parametric manner. Furthermore, it works in both single-frame and
multiframe scenarios. The use of constrained blur models appropriate to the problem at hand,
and/or of multiframe scenarios, generally improves the deblurring results. Tests performed on
monochrome and color images, with various synthetic and real-life degradations, without and with
noise, in single-frame and multiframe scenarios, showed good results, both in subjective terms and in
terms of the increase of signal to noise ratio (ISNR) measure. In comparisons with other state of the
art methods, our method yields better results, and shows to be applicable to a much wider range of
blurs. We propose new criteria for adjusting the regularization parameter and/or the number of
iterations of ID algorithms.

I. INTRODUCTION

Image deblurring methods can be divided into two
classes: nonblind, in which we assume the blurring
operator to be known, and blind, in which we
assume that the blurring operator is unknown. The
method that this paper describes here belongs to
the latter class.

A. Motivation
The application range of nonblind methods is much
narrower than the one of blind methods: in most
situations of practical interest the blurring filter’s
impulse response, also called point spread function
(PSF), is not known with good accuracy. Since
nonblind deblurring methods are very sensitive to
mismatches between the PSF used by the method
and the true blurring PSF, a poor knowledge of the
blurring PSF normally leads to poor deblurring
results.

Image deblurring (ID) is an inverse problem
where the observed image is modeled as the
convolution of a sharp image with a blur filter,

possibly plus some noise (often assumed spectrally
white and Gaussian). With applications in many
areas (e.g., astronomy, photography, surveillance,
remote sensing, medical imaging), research on ID
can be divided into non-blind ID (NBID), in which
the blur filter is assumed known, and (more
realistic) blind ID (BID), in which both the image
and the blur filter are (totally or partially) unknown.
Automatic image deblurring is an objective of great
practical interest for the enhancement of images in
photo and video cameras in astronomy in remote
sensing in tomography in other biomedical imaging
techniques etc. [2].
Despite its narrower applicability, NBID is already

a challenging problem to which a large amount of
research has been (and still is) devoted, mainly due
to the ill-conditioned nature of the blur operator:
the observed image does not uniquely and stably
determine the underlying original image. If this
problem is serious with a known blur, it is much
worse if there is even a slight mismatch between
the assumed blur and true one.
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Most of the NBID methods overcome this
difficulty through the use of an image regularizer,
or prior, the weight of which has to be tuned or
adapted [8], [13], [14], [15]. Most state-of-the-art
regularizers exploit the sparsity1 of the high
frequency/edge components of images; this is the
rationale underlying wavelet/frame-based methods
and total variation (TV) regularization [21].
In blind image deblurring (BID), not only the
degradation operator is ill-conditioned, but the
problem also is, inherently, severely ill-posed:
there is an infinite number of solutions (original
image + blurring filter) that are compatible with the
degraded image. For an overview of BID methods,
see [22] and [23]. Most previously published blind
deblurring methods are very limited, since they do
not allow the use of a generic PSF. Most of them
are based, instead, on PSF models with a small
number of parameters [24]–[28]. For example, to
model an out-of-focus blur, they normally use a
circle with uniform intensity, having as single
parameter the circle’s radius [24]. Similarly, to
model a motion blur, they normally use a straight-
line segment with uniform intensity, the only
parameters being length and slope [24]–[26]. These
approaches are very limited, because such models
rarely fit actual blurring PSFs well. For example,
the out-of-focus blurring PSF generally is more
complex than a simple uniform circle, and the
camera motion that causes a motion blur generally
is much more complex than a uniform, straight-line
motion. And, as was emphasized above, even a
slight mismatch between the deblurring PSF and
the blurring PSF strongly degrades the quality of
the deblurred image.

With application not only in ID, but also
in other inverse problems, several optimization
techniques have been proposed to handle sparsity-
inducing regularizers. A popular class of such
techniques belongs to the class of iterative
shrinkage/thresholding (IST) algorithms and their
recent accelerated versions [7], [8]. The iterative
nature of these methods requires, in addition to the
regularization parameter, the choice of an adequate
stopping criterion; often, there is a delicate
interplay between these two choices.

B. Objectives
The Objectives can be enlisted as follows:

• To design an algorithm that provides a
solution for blind and nonblind images.

• To design an algorithm which provides
perfect whiteness criteria function.

• To provide an optimal deblurring
algorithm.

• To provide a proper solution for real time
blur images for example moving object
problem and moving camera problem.

II. LITERATURE SURVEY

Recently, research issues at the various
intersections have been studied extensively. The
related work done and summary and discussion is
given among those research issues.

A. Related work done
In blind image deblurring (BID), not only the

degradation operator is ill-conditioned, but the
problem also is, inherently, severely ill-posed:
there are an infinite number of solutions (original
image + blurring filter) that are compatible with the
degraded image. For an overview of BID methods,
see [22] and [23].

Most previously published blind deblurring
methods are very limited, since they do not allow
the use of a generic PSF. Most of them are based,
instead, on PSF models with a small number of
parameters [24]–[28]. For example, to model an
out-of-focus blur, they normally use a circle with
uniform intensity, having as single parameter the
circle’s radius [24]. Similarly, to model a motion
blur, they normally use a straight-line segment with
uniform intensity, the only parameters being length
and slope [24–28]. These approaches are very
limited, because such models rarely fit actual
blurring PSFs well. For example, the out-of-focus
blurring PSF generally is more complex than a
simple uniform circle, and the camera motion that
causes a motion blur generally is much more
complex than a uniform, straight-line motion. And,
as was emphasized above, even a slight mismatch
between the deblurring PSF and the blurring PSF
strongly degrades the quality of the deblurred
image.

A recent work [28] manages to estimate the
blur under the variational Bayesian approach.
However, this method models the blur by means of
a Gaussian filter, which is completely defined by a
single parameter (the Gaussian’s variance), and is a
very weak model for real-life blurs.
References [12] and [13] present a method called
APEX. Although this method covers some blurs
which can be found in real-life, it is limited to
blurring PSFs modeled by a symmetrical Lévy
distribution with just two parameters. The authors
presented an experimental comparison of our
method with APEX. Some methods have been
proposed, which impose no strong restrictions on
the blurring filter [2], [14]–[17]. These methods
typically impose priors over the blurring filter, and
do not seem to be able to handle a wide variety of
blurs and scenes.
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The total variation (TV) is used to regularize the
blurring filters. Besides being used for space-
invariant blurs, the method described in [2] was
also applied with success in a synthetic image with
a space-variant blur. The method recently
presented in [9] is much less restrictive than
parameterized ones and yields good results, but is
only designed for motion blurs. An interesting
method for blind deblurring of color images was
proposed in [39]. This method appears not to pose
any strong restrictions on the blurring filter. In the
cited paper, several experimental results on
synthetic blurs are shown, but little information is
provided about them. From the information that is
given, it appears that the blurring filters that were
used in the experiments were either circularly
symmetric (including simulated out-of-focus
blurs), or corresponded to straight-line motion
blurs. There seems to be no reason for the method
not to be able to successfully deal with other kinds
of blurs, however. The blurring PSFs that are
shown in that paper appear to have a maximum
size of about 55 pixels (or a length of 3 pixels, in
the case of the motion blur). The improvements in
signal to noise ratio (ISNR) seem to be between 2
and 4 dB for the circularly symmetric blurs, and of
7 dB for the motion blur. In some cases, one has
access to more than one degraded image from the
same original scene, a fact which can be used to
reduce the ill-posedness of the problem. There are
also solutions like the ones presented in [2], which
cannot be considered completely blind, since they
require the use of additional data for preliminary
training. Contrary to previously published blind
deconvolution methods such as those mentioned
above, the method that we propose only makes a
weak assumption on the blurring PSF: it must have
a limited support. The method also assumes that
the leading (most important) edges of the original
image, before the blur, are sharp and sparse, as
happens in most natural images. To the authors’
knowledge, this is the first method to be proposed,
which is able to yield results of good quality in
such a wide range of situations.

The method uses a new prior which depends on
the image’s edges, and which favors images with
sparse edges. This prior leads to a regularizing term
which generalizes the well known total variation
(TV), in its discrete form. The estimation is guided
to a good solution by first concentrating on the
main edges of the image, and progressively dealing
with smaller and/or fainter details. Though the
method allows the use of a very generic PSF, it can
also take into account prior information on the
blurring PSF, if available. If a parameterized model
of the PSF is known, the method allows the
estimation of the model’s parameters. Although
initially developed for the single-frame scenario,
the method can also be used in multiframe cases,

benefiting from the existence of the additional
information from the multiple frames [5].

The performance and the robustness of the
method were tested in various experiments, with
synthetic and real-life degradations, without and
with constraints on the blurring filter, without and
with noise, using monochrome and color images,
and under the single-frame the multiframe
paradigms.

The quality of the results was evaluated both
visually and in terms of ISNR. Detailed
comparisons with two other methods available in
the literature [2], [12] were performed, and show
that the proposed method yields significantly better
results than these other methods.

In an attempt to encompass less restrictive
blurs, a fuzzy technique that uses several
prespecified PSF models [29]. However, this
method assumes that the PSF is zero-phase and,
furthermore, depends on the existence of a good
initial estimate of the PSF.

It is compared that method with two other
methods from the literature: APEX [12], [13] and
the method from [2] (which shall call YK method).
These were the only two methods for which it was
able to obtain implementations.

The APEX method [12] is quite fast, but is
limited to blurs which belong to the Levy family.
This is a family with just two parameters, in which
all functions have circular symmetry, and which
encompasses the Gaussians. The method has two
regularizing parameters (and), whose values have
set to those recommended by the author. The
method has two further parameters (designated by
and, respectively). For the used values 2.00, 2.25,
2.50, 7.75, 8.00, which cover the recommended
interval. Parameter can be varied between 1 and 0,
corresponding to the blurred image, and to a
“completely deblurred” one. The used the values 1,
0.75, 0.5, 0.25, and 0. For synthetic blurs, the ISNR
values were computed for all combinations of
values of the best combination was selected. For
real-life blurred photos, the best pair was chosen by
visual inspection, since no ISNR values could be
computed.
The YK method does not constrain the blur PSF,
but assumes that it is piecewise smooth (and, from
the comments made in [2], one can see that the
method has some bias toward piecewise constant
PSFs). The method has four parameters that must
be manually chosen. It started by trying the values
used in [2] but, with the blurred images, this
produced results with very strong oscillatory
artifacts. After several tests, they chose the
following values, which seemed to produce the
results with fewest artifacts: 1 and 2000 for the
regularizing parameters of the image and of the
PSF, respectively; 0.1 and 0.001 for the threshold
parameters of the diffusion coefficients of the
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image and of the PSF, respectively. It should note
that there tests were severely limited by the fact
that the deblurring of each image, with this
method, took about 12 h. Besides preventing us
from doing a more extensive search of parameter
values, this also prevented us from testing the
method on noisy synthetic degradations [5]. B.
Summary and discussion Extensive work has been
done in the field of image which processing
describes the proposed method and presents the
new prior for images. Here, a very brief overview
of some of these research works has been presented.

Deblurring method: The deblurring method is
based on two simple facts:
• In a natural image, leading edges are sparse.
• Edges of a blurred image are less sparse than
those of a sharp image because they occupy a
wider area.

Due to these facts, a prior which tends to make
the detected edges sparser will tend to make the
image sharper, while preventing it from becoming
unnatural (i.e., from presenting noise or artifacts)
[3].

Edge Detector: In order to be able to apply a prior
over the image edges, an edge detector was
developed. This edge detector showed to yield
better deblurring results than those obtained using
detectors. The edge detector is based on a set of
filters obtained, from a base filter, through
successive rotations [3], [4].

Image Prior: The prior that we use for images
assumes that edges are sparse, and that edge
intensities at different pixels are independent from
one another (which obviously is a large
simplification, but still leads to good results) [2][4].

Border Effects: Since, in the first iterations of the
method, the image estimates only contain the main
image edges, the optimal filter estimates, at this
stage, would not (even approximately) have a
limited support [1] [4].

Color and Hyperspectral Images: The method
that is proposed can also address color and
hyperspectral images. A color image is a
multichannel image which typically has three
channels (red, green and blue). A hyperspectral
image takes this concept much further, usually
containing more than one hundred channels, which
correspond to different frequency bands [3].

Quality measures: The measure that was used for
evaluating the quality of the results of blind
deblurring tests was the increase in signal to noise

ratio (ISNR), similarly to what is commonly done
in nonblind deblurring. [1], [3], [4].

III. PROPOSED WORK

Fig. 1. Residue of image by using
Blur/Deblur method.

The formulation of blind and non-blind ID is
briefly reviewed as follows:

A. Image Deconvolution/Deblurring
In ID problems, the degraded image is usually

modeled as:
y = h ∗ x + n …(1)

where y is the degraded image, x is the (unknown)
original image, n is noise, and h is the point spread
function (PSF) of the blur operator (assumed to be
known in NBID and unknown in BID) and ∗
denotes convolution. Both BID (finding x and h,
from y) and NBID (finding x, from y and h) are
normally

addressed by adopting a regularizer expressing
prior information about the image x and
considering an objective function of the form
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…(2)

the first term in is the classical data fidelity term
that results from assuming that the noise n is white

and Gaussian, (x) is a regularization function
embodying the prior information about x, and λ is
the regularization parameter. Typically, too large
values of λ lead to over-regularized images (e.g.,
over smoothed or cartoon-like), while too small
values of λ lead to under-regularized images
dominated by the influence of the noise. An
adequate choice of the regularization parameter λ is
thus clearly crucial to obtain a good image
estimate.

B. Non-blind Deblurring
In NBID, h is assumed to be known and the cost

function (2) is minimized with respect to x, given
some choice of the regularization parameter λ.
Many optimization methods for ID minimize the
cost function (2) iteratively [8], [9], [21] computing
the image estimate at iteration t + 1 as a function of
the previous estimate xt, the available data (y and
h), and the regularization parameter λ:

xk+1 = f(xk, y, h, λ). …(3)

Besides requiring a good estimate for the
regularization parameter λ, these iterative
approaches also need stopping criteria, which
considerably influence the final results.

C. Blind Deblurring
In BID, both the image x and the filter h are

unknown. A BID problem suffers from an obvious
lack of data, since there are many pairs (x, h) that
explain equally well the observed data y. Most BID
methods circumvent this difficulty by adding to (2)
a regularizer on the blur filter and, usually, by
alternatingly estimating the image and the blur
filter. A regularizer on the blur naturally involves
an additional regularization parameter, also
requiring adjustment, while the alternating
estimation of the image and the filter requires good
initialization (since the underlying objective (2) is
non-convex) and a good criterion to stop the
iterative process. The recent method in [2], [3]
yields good results without regularization on the
blur filter, i.e., using a cost function with the form
of (2). That method uses an iterative algorithm to
minimize (2), by starting with a strong
regularization (large λ), and gradually decreasing
it.

D. The Whiteness Criteria
The proposed criteria for selecting the

regularization parameter and the stopping iteration
are based on measures of the fitness of the image

estimate and the blur estimate (in NBID, h is

known, thus = h) to the degradation model (1),
by analyzing the estimated residual image:

Algorithm: For Blind and non-blind images

The characteristics of the residual r are then
compared with those assumed for the noise n in the
degradation model (1). In particular, the noise n is
assumed to be spectrally white (uncorrelated), thus
a measure of the whiteness of the residual r is used

to assess the adequacy of the estimates ( , ) to

the model. This is a quite generic assumption, valid
for most real situation. Our approach differs from
other methods based on residual statistics, such as
those in [17], [1], in that those methods do not use
spectral properties of the residual, but other
statistics, such as variance and other moments.
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The proposed criterion consists in selecting the
regularization parameter and/or final iteration of
the algorithm that maximize one of the whiteness
measures introduced below.

If this measure exhibits a clear peak as a
function of the regularization parameter and/or the
iteration number, we adopt an oriented search
scheme and stop the method as soon as the measure
of whiteness starts to decrease. This is the case in
the BID algorithm mentioned in the previous
section. Also in NBID, if optimizing only with
respect to λ, an efficient strategy is to sweep a
range of values, using the estimate at each value to
initialize the algorithm at the next value; this
process is known warm-starting, and may yield
large computational savings [1]. In our NBID
experiments, when optimizing with respect to λ
and/or the number of iterations, and since the goal
is to assess the ability of the proposed criteria to

select these quantities, with no concern for
computational efficiency, we simply consider a
grid of values and return the image estimate
yielding the maximum residual whiteness.
E. Measures of whiteness
The first step of the method is to normalize the

residual image to zero mean and unit variance; for
simplicity of notation, let this normalized residual
still be denoted as r.

Where, r and var(r) are, respectively, the
sample mean and sample variance of r. The
autocorrelation (and auto-variance, since the mean
is zero) of the normalized residual r, at 2D lag (m;
n), is estimated by

Where, the sum extends over the whole image. The
auto-covariance of a spectrally white image is a

delta function at the origin, (m, n). A possible
measure of whiteness of r is thus the distance
between the estimated autocorrelation Rrr(m, n)

and the ideal delta function. Considering a window
of (2L + 1) X (2L + 1) pixels, the first measure of

whiteness that is considered is simply the energy of
Rrr(m; n) outside the origin,

Where, the minus sign is used so that MR(r) is
larger for whiter residuals. In the experiments
reported below, they have used L = 4.
Considering that the auto-covariance has more
significant values for smaller lags, it makes sense

to give more weight to these terms. Based on that,
a weighted version of the measure in (5) was also
considered,

Where, W(m; n) is a matrix of weights. In the experiments, they have used a Gaussian weighting. Let Srr(ω
1;  ω 2) denote the power spectral density of r, at 2D spatial frequency (ω1; ω 2),
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Where, is the two-dimensional discrete Fourier
transform (2D-DFT). In agreement with the fact
that the autocorrelation of a white signal is a delta
function, a white signal has a flat power spectral
density. To measure the flatness of Srr, the authors
measure its Shannon entropy, after adequate
normalization; recall that the maximum entropy is
achieved by a flat distribution. The resulting
measure of whiteness is denoted as MH(r). The
stopping criterion consists in stopping the BID
algorithm when the whiteness measure used
(MR(r), MRW(r), or MH(r)) starts decreasing. To
avoid a premature stopping (of course, we have no
guarantee that the whiteness measure does not
oscillate), we actually run the algorithm until the
whiteness measure decreases considerably, and
then return the image estimate obtained at the
iteration at which the maximum whiteness was
observed [2].

IV. INPUT OUTPUT SPECIFICATION &
DISCUSSION

Fig. 2. Adaptive method for whiteness
measurement.

The above shown Adaptive method for whiteness
measurement can be explained with examples as
follows:

A. Input images

Fig. 3. Type of Input Image with residual
value = 5.

B. Processing images
The images below can be obtained during the

working of residual method.

Fig. 4. Type of Image with residual value = 17.

Fig. 5. Type of Image with residual value = 23.
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Fig. 6. Type of Image with residual value = 30.

C. Output Images
The images below can be assumed that they can be

obtained after the working of residual method and
the Adaptive ISNR method. Some Adaptive ISNR
methods are as follows:

GSURE method: The well known SURE (Stein’s
unbiased risk estimate) is an unbiased estimator of
the MSE achieved by an (almost arbitrary)
estimator of an unknown vector observed under
additive white Gaussian noise. SURE have been
directly applied to tune the regularizing parameter
of linear and nonlinear denoising methods.

PD-SURE: The predicted SURE (PD-SURE) is a
SURE-based unbiased estimator of the predicted-
MSE (mean square error on the data domain).
Monte-Carlo estimation of the divergence: The
difficulty in using SURE-based measures (SURE,
GSURE or PD-SURE) resides in
computation/approximating the divergence term, as
it involves derivatives of a function defined via an
optimization problem [1].

Fig. 8. Estimated output Image with ISNR value =
23.

CONCLUSION
We have presented a method for blind and non-
blind image deblurring. The method differs from
most other existing methods by only imposing
weak restrictions on the blurring filter, being able
to recover images which have suffered a wide
range of degradations. Good estimates of both the
image and the blurring operator are reached by
initially considering the main image edges, and
progressively handling smaller and/or fainter ones.
The method uses an image prior that favors images
with sparse edges, and which incorporates an edge
detector that was specially developed for this
application. The method can handle both
unconstrained blurs and constrained or parametric
ones, and it can deal with both single-frame and
multiframe scenarios. Thus the algorithm can be
designed which provides a solution for blind and
nonblind images which provides perfect whiteness
criteria function and provide a proper solution for
real time blur images. Also there can be a solution
for the moving object or moving camera blur
image problems.
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